مقایسۀ عملکرد شبکه های عصبیِ مصنوعی با تحلیل رگرسیون در برآورد حجم تنۀ درختان

Authors

هادی بیاتی

اکبر نجفی

abstract

آنالیز رگرسیون روش رایجی است که امروزه برای برآورد حجم تنۀ درختان استفاده می شود. این روش با تعیین رابطه ای، حجم را با دقت خاصی برآورد می کند، اما محدودیت هایی مانند نرمال بودن متغیر وابسته و همگن بودن واریانس خطاها نیز دارد. در این پژوهش سعی شده از شبکه های عصبی مصنوعی (ann)، به عنوان یکی از زیر مجموعه های فنّاوری جدید هوش مصنوعی (ai)، به منظور برآورد حجم تنه، استفاده شود. بدین منظور، تعداد 101 درخت از درختان نشانه گذاری شدۀ جنگل آموزشی ـ پژوهشی دانشگاه تربیت مدرس انتخاب، و قطر برابر سینه، قطر در ارتفاع کنده، قطر انتهای تنه، ارتفاع تنه، و ارتفاع کل درخت، با دقت بسیار اندازه گیری شدند. از دو مدل شبکۀ عصبی، پرسپترون چند لایه (mlp) و تابع پایۀ شعاعی (rbf)، به منظور پیش بینی حجم تنه استفاده شد. نتایج نشان داد با افزایش متغیرهایی که همبستگی بیشتری با حجم تنه دارند، ضریب تشخیص شبکۀ عصبی از 80/0 به 95/0 افزایش می یابد. شبکۀ عصبی تابع پایۀ شعاعی در مقایسه با شبکۀ عصبی پرسپترون چند لایه دقت بیشتری در برآورد حجم تنه دارد. مقایسۀ معیارهای ارزیابی شبکۀ عصبی مصنوعی با رگرسیون گام به گام نشان داد که شبکۀ عصبی mlp و rbf به ترتیب دارای مقدار rmse 18/1 و 05/1 است، درحالی که مقدار rmse مدل رگرسیون 57/2 می باشد. ضریب تشخیص رگرسیون در مقایسه با هر دو مدل شبکۀ عصبی نیز مقدار کمتری است.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مقایسۀ عملکرد شبکه‌‌های عصبیِ مصنوعی با تحلیل رگرسیون در برآورد حجم تنۀ درختان

آنالیز رگرسیون روش رایجی است که امروزه برای برآورد حجم تنۀ درختان استفاده می‌‌‌شود. این روش با تعیین رابطه‌‌ای، حجم را با دقت خاصی برآورد می‌‌کند، اما محدودیت‌‌هایی مانند نرمال‌بودن متغیر وابسته و همگن‌بودن واریانس خطاها نیز دارد. در ‌‌این پژوهش سعی شده از شبکه‌‌های عصبی مصنوعی (ANN)، به‌عنوان یکی از زیر‌مجموعه‌‌های فنّاوری جدید هوش مصنوعی (AI)، به‌‌منظور برآورد حجم تنه، استفاده شود. بدین‌منظور،...

full text

مقایسه بین شبکه عصبی مصنوعی و تحلیل رگرسیون در برآورد مدت زمان قطع درخت

قطع درخت در بین مؤلفه‌های بهره‌برداری، اهمیت زیادی دارد. برآورد تولید تجهیزات جنگلی، بخش مهمی از مدیریت هزینه‌ها در یک واحد جنگلداری است که با کاهش هزینه‌های عملیات همراه است. به عبارت دیگر، هزینه‌های بالای سرمایه‌گذاری در بهره‌برداری جنگل، دلیل خوبی برای تحقیقات مهندسی جنگل و همچنین مدل‌سازی زمان می‌باشد. روشهای زیادی مانند انواع رگرسیون‌ها، منطق فازی، شبکه‌های عصبی و غیره برای پیش‌بینی زمان ق...

full text

مقایسه دو روش شبکه عصبی مصنوعی و آنالیز رگرسیون در پیش بینی و برآورد حجم مقطوعات درختان در جنگل آموزشی-پژوهشی خیرود نوشهر

استفاده از مدل­های تجربی آماری از روش ­های کاربردی رایج، میان مدیران منابع جنگلی است. تحلیل رگرسیون نیز از روش‌های آماری بوده که می­ تواند برای برآورد حجم استفاده گردد. این روش نیازمند پیش ­فرض و دارای محدودیت­هایی مانند نرمال بودن توزیع داده­ ها، عدم رابطه هم خطی، یکسان بودن واریانس خطاها است. استفاده از روش­ های جدید مثل شبکه­ های عصبی مصنوعی، دارای محدودیت های مذکور نیست. در این بررسی هدف مق...

full text

مقایسه عملکرد شبکه عصبی مصنوعی و رگرسیون لجستیک در تحلیل تشخیص شاخصq توبین

شاخص توبین یکی از شاخص های مهم در دنیای سرمایه گذاری است که بعنوان معیاری برای ارزیابی عملکرد شرکت ها جهت تصمیم گیری برای سرمایه گذاری های صحیح به کار می رود. اما در دقت نتایج مبتنی بر این شاخص، ابهاماتی وجود دارد که پژوهشگران را بر آن داشته است تا به دنبال برآورد این شاخص از روی دیگر شاخص های مالی باشند. اما شاخص توبین یک شاخص پویاست و به علت مبتنی بودن بر قیمت بازار، ممکن است در لحظه مقدار آن...

full text

My Resources

Save resource for easier access later


Journal title:
نشریه جنگل و فرآورده های چوب

Publisher: دانشکده منابع طبیعی

ISSN 5052-2008

volume 66

issue 2 2013

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023